Bayesian modeling of Dupuytren disease using copula Gaussian graphical models
نویسندگان
چکیده
Dupuytren disease is a fibroproliferative disorder with unknown etiology that often progresses and eventually can cause permanent contractures of the affected fingers. Most of the researches on severity of the disease and the phenotype of this disease are observational studies without concrete statistical analyses. There is a lack of multivariate analysis for the disease taking into account potential risk factors. In this paper, we provide a novel Bayesian framework to discover potential risk factors and which fingers are jointly affected. Copula Gaussian graphical modeling is one potential way to discover the underlying conditional independence of variables in mixed data. Our Bayesian approach is based on copula Gaussian graphical models. We embed a graph selection procedure inside a semiparametric Gaussian copula. We carry out the posterior inference by using an efficient sampling scheme which is a trans-dimensional MCMC approach based on birth-death process. We implemented the method as a general purpose in the R package BDgraph.
منابع مشابه
Copula Gaussian Graphical Models and Their Application to Modeling Functional Disability
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompasses...
متن کاملCopula Gaussian Graphical Models and Their Application to Modeling Functional Disability Data1 by Adrian Dobra
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompasses...
متن کاملCopula Gaussian Graphical Models and Their Application to Modeling Functional Disability Data
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass m...
متن کاملCopula Gaussian Graphical Models *
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass many stud...
متن کاملHybrid Copula Bayesian Networks
This paper introduces the hybrid copula Bayesian network (HCBN) model, a generalization of the copula Bayesian network (CBN) model developed by Elidan (2010) for continuous random variables to multivariate mixed probability distributions of discrete and continuous random variables. To this end, we extend the theorems proved by Nešlehová (2007) from bivariate to multivariate copulas with discret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015